

## MASON INDUSTRIES, Inc.

Manufacturers of Vibration Control Products

350 Rabro Drive Hauppauge, NY 11788 631/348-0282 FAX 631/348-0279 2101 W. Crescent Ave., Suite D Anaheim, CA 92801 714/535-2727 FAX 714/535-5738

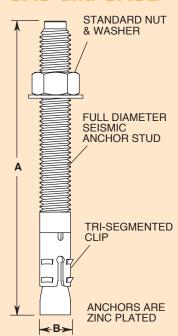
Info@Mason-Ind.com • www.Mason-Ind.com

SEISMIC ANCHOR STUD WITH NUT & WASHER SEISMIC ANCHOR SELF-TAPPING, SEISMIC ROD ANCHOR

SAS, SASE, SAST & SRA

**DATA SHEET DS-213-1.1** 

Anchorage of equipment in seismic zones is an important part of system restraint. When anchoring to concrete there are a variety of methods available. One excellent method is an Adhesive Anchor. Our type SRA anchor uses either standard A-307 Grade C or high strength A-193 Grade B7 threaded rod. The new adhesive is a two component high solids, epoxy based anchoring system. It can be used in all non-overhead applications to give you high load capacity. This adhesive will anchor the SRA for higher load capabilities. Another advantage is the lower reduction factors for closer spacings and edge distances. The SRA anchor is weather resistant and can even be installed in water filled holes.


Another excellent device is the wedge type expansion anchor. Since it is load assisted, it provides excellent resistance to vibration and shock loads. Its slip potential is actually a positive feature in seismic applications, giving early warning of potential failure whereas other anchors just fail catastrophically. Mason's SAS seismic anchor stud is

a wedge anchor for suspension applications such as our SCB, seismic cable brace system, for use on piping and suspended equipment. In many parts of the country concrete filled steel decking is used for floor slabs. The new SAS anchor is approved for use attached to the underside of a concrete filled steel deck in either the upper or lower flutes of the steel deck.

The Mason SAST anchor is a concrete screw. Equipment can be moved into position and the SAST's hole can be drilled through the equipment plate and the anchor screwed in similar to a self tapping steel screw. They can be removed and re-installed in the same hole. This is useful for equipment that must be removed and inspected periodically.

All three of these anchors have been tested in accordance with ACI 355.2 and have obtained ICC Evaluation Services test reports. ACI 355.2 is a testing procedure that includes both cracked and uncracked concrete. The cracked testing is used to evaluate the anchor for seismic installations, and yields lower allowable values.

## SAS and SASE



# TYPE SAS STANDARD LENGTH ANCHOR STUD RATINGS BASED ON ALLOWABLE STRESS DESIGN (ASD) installed into 2500 psi (17.2 Mpa) Normal Weight or Sand– Lightweight Concrete\*

| Type        | Embedment          | Normal Wei                      | ght Concrete        | Lightweight Concrete            |                     |  |  |
|-------------|--------------------|---------------------------------|---------------------|---------------------------------|---------------------|--|--|
| and<br>Size | Depth<br>(in) (mm) | Tension <sup>†</sup> (lbs) (kg) | Shear<br>(lbs) (kg) | Tension <sup>†</sup> (lbs) (kg) | Shear<br>(lbs) (kg) |  |  |
| SAS-3/8     | 2 51               | 445 <b>200</b>                  | 650 <b>295</b>      | 360 <b>165</b>                  | 390 <b>175</b>      |  |  |
| SAS-1/2     | 23/4 70            | 980 445                         | 1055 480            | 590 <b>270</b>                  | 635 <b>290</b>      |  |  |
| SAS-5/8     | 33/8 86            | 1325 600                        | 2845 <b>1290</b>    | 795 <b>360</b>                  | 1710 <b>775</b>     |  |  |
| SAS-3/4     | 41/8 105           | 1520 690                        | 3870 <b>1755</b>    | 915 <b>415</b>                  | 2325 <b>1055</b>    |  |  |
| SAS-1       | 51/4 <b>133</b>    | 2220 1005                       | 5960 <b>2705</b>    | 1335 <b>605</b>                 | 3575 <b>1620</b>    |  |  |

# TYPE SASE EXTENDED LENGTH ANCHOR STUD RATINGS BASED ON ALLOWABLE STRESS DESIGN (ASD) installed into 2500 psi (17.2 Mpa) Normal Weight or Sand-Lightweight Concrete\*

| Type     | Embedment | Normal We            | ight Concrete | Lightweight Concrete |                  |  |  |
|----------|-----------|----------------------|---------------|----------------------|------------------|--|--|
| and      | Depth     | Tension <sup>†</sup> | Shear         | Tension <sup>†</sup> | Shear            |  |  |
| Size     | (in) (mm) | (lbs) (kg)           | (lbs) (kg)    | (lbs) (kg)           | (lbs) (kg)       |  |  |
| SASE-3/8 | 37/8 98   | 950 430              | 820 390       | 690 315              | 820 <b>370</b>   |  |  |
| SASE-1/2 |           | 1275 580             | 2960 1340     | 1080 490             | 2325 <b>1055</b> |  |  |
| SASE-5/8 |           | 2355 1070            | 4520 2050     | 1660 755             | 3580 <b>1625</b> |  |  |
| SASE-3/4 |           | 2740 1245            | 6980 3165     | 1645 745             | 4190 <b>1900</b> |  |  |

# TYPE SAS & SASE ANCHOR STUD RATINGS BASED ON ALLOWABLE STRESS DESIGN (ASD) installed in the Soffit of 3000 psi (20.7 Mpa) Normal Weight or Sand-Lightweight Concrete-filled Profile Steel Deck Assemblies\*.

Anchors must be installed in either the lower or upper flutes of the profile deck.

| Type<br>and<br>Size | Embed<br>Dep<br>(in) |     | Ten<br>(lbs) | sion<br>(kg) | Sh<br>(lbs) | ear<br>(kg) |
|---------------------|----------------------|-----|--------------|--------------|-------------|-------------|
| SAS-3/8             | 2                    | 51  | 430          | 195          | 725         | 330         |
| SASE-3/8            | 33/8                 | 86  | 760          | 345          | 1590        | 720         |
| SAS-1/2             | 23/4                 | 70  | 695          | 315          | 970         | 440         |
| SASE-1/2            | 41/2                 | 114 | 930          | 420          | 2085        | 945         |
| SAS-5/8             | 33/8                 | 86  | 890          | 405          | 1200        | 545         |
| SASE-5/8            | 55/8                 | 143 | 1700         | 770          | 3185        | 1445        |

For combined allowable stress design tension and shear forces on anchors, use the following equation:

$$\frac{T_{Applied}}{T_{Allowable (ASD)}} + \frac{V_{Applied}}{V_{Allowable (ASD)}} \le 1.2$$

#### **TYPE SAS & SASE ANCHOR STUD DIMENSIONS**

| Type<br>and<br>Size | A<br>(in) (mm) | B<br>(in) (mm) | Maximum<br>Tightening Torque<br>(Ft-lbs) (N-m) |
|---------------------|----------------|----------------|------------------------------------------------|
| SAS-3/8             | 31/2 89        | 3/8 10         | 30 41                                          |
| SAS-1/2             | 43/4 121       | 1/2 13         | 50 68                                          |
| SAS-5/8             | 5 127          | 5/8 16         | 85 116                                         |
| SAS-3/4             | 61/4 159       | 3/4 19         | 180 244                                        |
| SAS-1               | 7 178          | 1 25           | 230 312                                        |
| SASE-3/8            | 5 127          | 3/8 10         | 30 41                                          |
| SASE-1/2            | 51/2 140       | 1/2 13         | 50 68                                          |
| SASE-5/8            | 7 178          | 5/8 16         | 85 116                                         |
| SASE-3/4            | 81/2 216       | 3/4 19         | 180 245                                        |

- Anchors have the following Code Reports:
  - ICC-ES-ESR-1771 and City of Los Angeles RR25705 for cracked & uncracked concrete
  - Florida Statewide Product Approval <u>FL11506.6</u>

- \* These values are applicable when the anchors are installed with periodic special inspection as set forth in Section 1701.5.2 and Section 1704.13 of the IBC.
- <sup>†</sup> The Tension values may be increased for greater compressive strength, up to 8500 psi (58.6 MPa), by multiplying the value by (F<sup>\*</sup>c/2500)<sup>0.5</sup>, where F'<sub>C</sub> is the specified strength of concrete in psi.

  For example: SAS-1/2 in 4000 psi normal weight concrete

$$T = \left(\frac{4000}{2500}\right)^{0.5} x 980 \text{ lbs} = 1240 \text{ lbs}$$

#### NOTES:

- . All values are for single anchors with no edge distance or spacing reduction.
- 2. Anchorage must be designed in accordance with ACI 318-11 Appendix D.
- 3. Allowable loads are for the attachment of non-structural components.
- 4. Allowable loads are based on 100% seismic loading in seismic design categories C-F.

### MASON INDUSTRIES

## SAST

#### SEISMIC ANCHOR SELF-TAPPING



#### TYPE SAST ANCHOR BOLT RATINGS BASED ON ALLOWABLE STRESS DESIGN (ASD)

|          |           | Installed into 25    | 00psi (17.2Mpa)  | Installed into 2     | Maximum          |                   |
|----------|-----------|----------------------|------------------|----------------------|------------------|-------------------|
| Type     | Embedment | Normal Wei           | ght Concrete     | Lightweigh           | nt Concrete      | Tightening Torque |
| and      | Depth     | Tension <sup>†</sup> | Shear            | Tension <sup>†</sup> | Shear            |                   |
| Size     | (in) (mm) | (lbs) (kg)           | (lbs) (kg)       | (lbs) (kg)           | (lbs) (kg)       | (Ft-lbs) (N-m)    |
| SAST-3/8 | 31/4 83   | 920 410              | 1160 <b>525</b>  | 555 <b>250</b>       | 695 <b>315</b>   | 50 68             |
| SAST-1/2 | 4 102     | 1500 680             | 2010 910         | 900 405              | 1205 <b>545</b>  | 65 88             |
| SAST-5/8 | 41/2 114  | 1810 820             | 3870 <b>1755</b> | 1085 <b>490</b>      | 2325 <b>1055</b> | 140 <b>190</b>    |
| SAST-3/4 | 51/2 140  | 2070 940             | 3925 1780        | 1245 <b>565</b>      | 2355 <b>1065</b> | 150 <b>205</b>    |

For combined allowable stress design tension and shear forces on anchors, use the following equation:

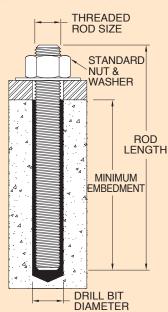
$$\frac{T_{Applied}}{T_{Allowable (ASD)}} + \frac{V_{Applied}}{V_{Allowable (ASD)}} \le 1.2$$

- \* These values are applicable when the anchors are installed with periodic special inspection as set forth in Section 1701.5.2 and Section 1704.13 of the IBC.
- $^\dagger$  The Tension values may be increased for greater compressive strength, up to 8500 psi (58.6 MPa), by multiplying the value by ( $^{\rm F^{\prime}C}$ /2500) $^{\rm 0.5}$ , where F $_{\rm C}$  is the specified strength of concrete in psi. For example: SAST-1/2 in 4000 psi normal weight concrete

$$T = \left(\frac{4000}{2500}\right)^{0.5} x \ 1500 \text{ lbs} = 1895 \text{ lbs}$$

#### TYPE SAST ANCHOR BOLT DIMENSIONS

| Type and Size                                | (in)             | A<br>(mm)                | (in)                     | B<br>(mm)            |
|----------------------------------------------|------------------|--------------------------|--------------------------|----------------------|
| SAST-3/8<br>SAST-1/2<br>SAST-5/8<br>SAST-3/4 | 4<br>5<br>6<br>7 | 102<br>127<br>152<br>178 | 3/8<br>1/2<br>5/8<br>3/4 | 10<br>13<br>16<br>19 |


Anchors have the following Code Reports:

- ICC-ES-ESR-2713 and City of Los Angeles Report RR25741 for cracked & uncracked concrete
- ICC-ES-ESR-1056 and City of Los Angeles Report
- RR25560 for CMU (Concrete Masonry Units)
  Florida Statewide Approval FL11506.7
  Factory Mutual 3017082

#### NOTES

- All values are for single anchors with no edge distance or spacing reduction.
  Anchorage must be designed in accordance with ACI 318-11 Appendix D.
  Allowable loads are for the attachment of non-structural components.
  Allowable loads are based on 100% seismic loading in seismic design categories C-F.

# SEISMIC ROD ANCHOR



#### **TYPE SRA ANCHOR DATA**

| Type<br>and<br>Size | Threaded<br>Rod<br>Size | Le | lod<br>ngth<br>(mm) | Embedment<br>Depth<br>(in) (mm) |     | Drill Bit<br>Dia<br>(in) | Minimum<br>Concrete<br>Thickness<br>(in) (mm) |     | Maximum Tightening Torque After curing (Ft-lbs) (N-m) |           | Number of<br>Anchors that can<br>be installed per<br>22oz of adhesive |
|---------------------|-------------------------|----|---------------------|---------------------------------|-----|--------------------------|-----------------------------------------------|-----|-------------------------------------------------------|-----------|-----------------------------------------------------------------------|
| SRA-3/8             | 3/8-16 UNC              | 6  | 152                 | 4                               | 102 | 1/2                      | 57/8                                          | 149 | 10                                                    | 14        | 40                                                                    |
| SRA-1/2             | 1/2-13 UNC              | 7  | 178                 | 5                               | 127 | 5/8                      | 71/2                                          | 190 | 20                                                    | <b>27</b> | 30                                                                    |
| SRA-5/8             | 5/8-11 UNC              | 8  | 203                 | 6                               | 152 | 3/4                      | 91/4                                          | 235 | 30                                                    | 41        | 20                                                                    |
| SRA-3/4             | 3/4-10 UNC              | 9  | 229                 | 7                               | 178 | 7/8                      | 103/4                                         | 273 | 45                                                    | 61        | 14                                                                    |
| SRA-1               | 1-8 UNC                 | 11 | 280                 | 9                               | 229 | 11/8                     | 14                                            | 355 | 80                                                    | 108       | 7                                                                     |

## **CURE SCHEDULE**†

| Concrete Te | emperature<br>°C | Cure Time<br>(Hrs.) |
|-------------|------------------|---------------------|
| 50          | 10               | 72                  |
| 70          | 21               | 24                  |
| 90          | 32               | 24                  |
| 110         | 43               | 24                  |

For combined allowable stress design tension and shear forces on anchors, use the following equation:

$$\frac{T_{Applied}}{T_{Allowable (ASD)}} + \frac{V_{Applied}}{V_{Allowable (ASD)}} \le 1.2$$

†For water saturated concrete, these times should be doubled.

#### NOTES:

- 1. All values are for single anchors with no edge distance or spacing reduction.
- Anchorage must be designed in accordance with ACI 318-11 Appendix D.
- Allowable loads are for the attachment of non-structural components.
- Allowable loads are based on 100% seismic loading in seismic design categories C-F.

- Anchors have the following Code Reports:
   ICC-ES-ESR-2508 and City of Los Angeles Report RR25744 for cracked & uncracked concrete
   NSF/ANSI Standard 61 (216in2 / 1000 gal)

#### TYPE SRA ANCHOR RATINGS BASED ON ALLOWABLE STRESS DESIGN (ASD)

installed into 2500 psi (17.2 Mpa) Normal Weight Concrete\*

| Type               | A307 Grade C                         | Threaded Rod                      | A193 Grade B7 Threaded Rod        |                                   |                                   | 6 Stainless Steel<br>Threaded Rod    | A193 Grade B8 Stainless Steel<br>(Type 18-8, 304) Threaded Rod |                                   |  |
|--------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------------------------|--|
| and<br>Size        | Tension (in) (mm)                    | Shear (lbs) (kg)                  | Tension<br>(lbs) (kg)             | Shear<br>(lbs) (kg)               | Tension (lbs) (kg)                | Shear<br>(lbs) (kg)                  | Tension<br>(lbs) (kg)                                          | Shear<br>(lbs) (kg)               |  |
| SRA-3/8<br>SRA-1/2 | 1585 <b>720</b><br>2360 <b>1070</b>  | 895 <b>405</b><br>1595 <b>720</b> | 1585 <b>720</b> 2360 <b>1070</b>  | 1930 <b>880</b> 3440 <b>1560</b>  | 1585 <b>720</b> 2360 <b>1070</b>  | 1350 <b>615</b> 3410 <b>1545</b>     | 1585 <b>720</b><br>2360 <b>1070</b>                            | 700 <b>320</b> 2325 <b>1055</b>   |  |
| SRA-5/8<br>SRA-3/4 | 2440 <b>1105</b><br>4780 <b>2165</b> | 2540 <b>1150</b> 3755 <b>1700</b> | 2440 <b>1105</b> 4780 <b>2165</b> | 5475 <b>2480</b> 8095 <b>3670</b> | 2440 <b>1105</b> 3820 <b>1730</b> | 5425 <b>2460</b><br>8015 <b>3635</b> | 2440 <b>1105</b> 3820 <b>1730</b>                              | 3700 <b>1680</b> 5465 <b>2480</b> |  |
| SRA-1              | 7270 <b>3295</b>                     | 6815 3090                         | 7270 3295                         | 14685 6660                        | 7270 <b>3295</b>                  | 14560 6610                           | 7270 <b>3295</b>                                               | 9925 4500                         |  |