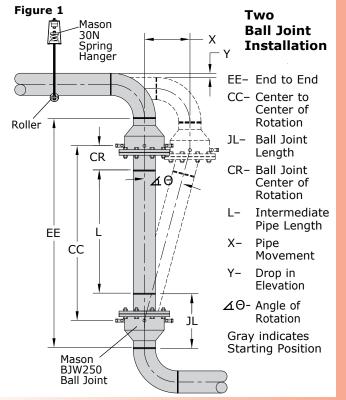
MASON-MERCER STOCK BALL JOINTS

Ball joints have been around since time. The writer first came across War II where they were used on steam date pipe expansion and twisting of they were used exactly the same way Liberty Ships of World War II were copies of the same vessels.

the beginning of them during World vessels to accommothe hulls. In all probability, in the First World War, as the

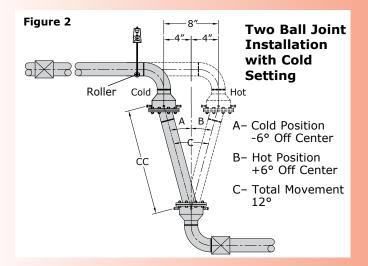
All in all, that is about a 100 year history with little difference in design except for the use of better grade materials and improved seals. While thin walled material like Stainless Steel hoses or the many variations of Stainless Steel expansion joints have very high safety factors, there is comfort in knowing you are using a zero thrust product where no component has a thickness less than the piping itself. One of our overseas reps, in a country where sabotage was common, commented "They are quite resistant to rifle fire as well."

We were first exposed to the need for ball joints where thermal expansion design centered around the use of high pressure steam for heating. There is one huge steam generating station in lower New York that continues to supply steam for heating in New York City. Any building owner that purchases this high pressure supply steam must engineer all their high pressure inlet piping to Con Edison's (the steam supplier's) satisfaction. The use of ball joints to handle thermal movement is a necessity as space is tight and leaves no room for pipe loops or offsets.


We not only sell our ball joints, but we engineer the systems as well, should there be no specifications or if specifications call for design by vendor.

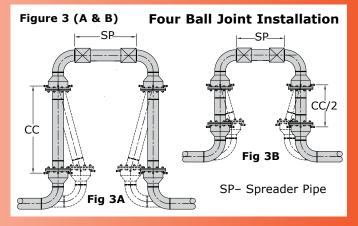
Mapor

We look forward to working with you.


TWO BALL JOINTS

When ball joints are installed at each end of a pipe offset (Fig. 1), the system can accommodate much larger movements with much lower anchorage requirements than solid pipe in the same configuration.

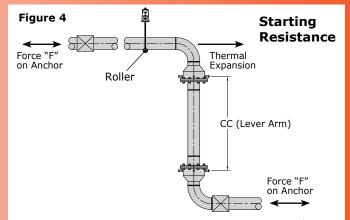
COLD SETTING


One way to increase allowable motion is to start out with the assembly pre-set all the way to the position when the pipe is cold (Fig. 2). Assuming the total expansion from Cold (Ambient Temperature) to Hot is 8 inches, you could set the pipe line 4 inches off center and design for a 4" rather than an 8" movement leg. The piping is preset 6° off center to 6° past center. Maximum rated movement is 7.5° off center, so 6° provides a safety factor.

While the method is perfectly valid, steamfitters are accustomed to working "Plumb" and the "Cold Set" instruction can be missed. The method is excellent but supervision becomes essential and the designer must decide whether to take the risk.

FOUR BALL JOINTS

In many cases any offset is undesirable, so four ball joints are used in a loop (Fig. 3A). Using the same dimension "CC" in both legs, you can accommodate twice the motion. Reducing the centers 50% would accommodate the same two joint motion (Fig. 1) with smaller offset and conserve space as well (Fig. 3B).


DROP IN ELEVATION "Y"

Ball joint movement reduces distance between parallel piping as shown by "Y" (Figure 1). This dimension is significant because if the offset is vertical, the adjacent pipe support could pull out. Therefore a Mason 30N spring hanger with a minimum deflection of 4 times "Y" should be installed at the first support and the second and third locations studied.

STARTING RESISTANCE

Ball joints do not generate any pressure thrust. However, there is an initial force required to start motion that controls anchorage.

The force "F" applied to the pipe anchors is directly related to the distance between Ball Joint Centers "CC". (Figure 4). Force "F" diminishes with longer lever arms needed for larger movements. Four joint loops have shorter levers for the same movement, so forces increase (Table 4).

USING SELECTION TABLES

The following tables provide rounded values for easy selection. For the sake of simplicity, Ball Joint Centers "CC" are in 6" increments in Table 1 and 3" in Table 2. If space is tight, interpolate between columns. Calculations based on Table 5 may save even more space.

The next page provides examples of how to use the tables with the installations previously discussed.

TABLE 1 "CC", "L", and "Y" DIMENSIONS for TWO JOINT INSTALLATION WITHOUT COLD SETTING See Figure 1

Pipe Size (inches)	Up to 4"	5"	6" ່	7"	8"	nent ' 9" s "CC	• X " 10" ;" (inc	11" hes)	12"	CR Ball Joint	JL Ball
2	24	30	36	42	48	54	60	66	72	Center of	Joint
21/2-14	4 8	60	72	84	96	108	120	132	144	Rotation	Length
Size	In	tern	nitten	t Pip	be Le	ength	" L " (inche	es)	(inches)	(inches)
2	16	22	28	34	40	46	52	58	64	4	7
21/2	40	52	64	76	88	100	112	124	136	41/8	77/8
3	39	51	63	75	87	99	111	123	135	43/8	81/2
4	38	50	62	74	86	98	110	122	134	5	101/2
5	38	50	62	74	86	98	110	122	134	51/8	105/8
6	37	49	61	73	85	97	109	121	133	55/8	117/8
8	34	46	58	70	82	94	106	118	130	7	143/8
10	33	45	57	69	81	93	105	117	129	75/8	16
12	29	41	53	65	77	89	101	113	125	91/2	181/8
14	27	39	51	63	75	87	99	111	123	101/2	191/4
Size	Drop in Elevation "Y" (inches)										
2 21/2-14	.34 .17	.42 .21	.50	.59 .29	.67 .33	.76 .38	.84 .42	.92 .46	1.01 .50		

TABLE 2 "CC", "L", and "Y" DIMENSIONS for TWO JOINT INSTALLATION WITH COLD SETTING See Figure 2

Pipe Size	Up to 4"	° 5"	Pip 6"	e Mo 7"	veme 8"	ent ") 9"	(" 10"	11"	12"		
(inches)		Ball	Joint	Cen	ters '	'CC"	(inch	ies)		CR Ball Joint	JL
2 21/2-14	12 24	15 30	18 36	21 42	24 48	27 54	30 60	33 66	36 72	Center of Rotation	Ball Joint Length
Size	In	term	nittent	Pip	e Len	gth '	" L " (ii	nche	s)	(inches)	(inches)
2 21/2 3 4	4 16 15 14	7 22 21 20	10 28 27 26	13 34 33 32	16 40 39 38	19 46 45 44	22 52 51 50	25 58 57 56	28 64 63 62	4 41/8 43/8 5	7 77/8 81/2 101/2
5 6 8	14 13 10	20 19 16	26 25 22	32 31 28	38 37 34	44 43 40	50 49 46	56 55 52	62 61 58	51/8 55/8 7	105/8 117/8 143/8
10 12 14	9 5 3	15 11 9	21 17 15	27 23 21	33 29 27	39 35 33	45 41 39	51 47 45	57 53 51	75/8 91/2 101/2	16 181/8 191/4
Size	Drop in Elevation "Y" (inches)										
2 21/2-14	.17 .08	.21 .10	.25	.29 .15	.34 .17	.38 .19	.42 .21	.46 .23	.50 .25		2

TABLE 3 MINIMUM SPREADER PIPE "SP" BETWEEN ELBOWS for FOUR JOINT INSTALLATION TO AVOID JOINT CLASHING See Figure 3

Pipe	Up to			Pipe		nent " X "	e		13			
Size	4"	5"	6"	7"	8"	9"	10"	11"	12"			
(inches)	Spreader Pipe "SP" between Elbows (inches)											
2	18	21	24	27	30	30	30	33	36			
21/2	18	21	24	27	30	30	30	33	36			
3	18	21	24	27	30	30	30	33	36			
4	24	24	24	27	30	30	30	33	36			
5	24	24	24	27	30	30	30	33	36			
6	18	21	24	27	30	30	30	33	36			
8	18	21	24	27	30	30	30	33	36			
10	18	21	24	27	24	27	30	33	36			
12	18	21	24	27	24	27	30	33	36			
14	12	15	18	21	24	24	24	27	30			

TABLE 4 STARTING RESISTANCE AT 250psi See Figure 4

	_	Up to	Up to	Pipe Movement "X"								
Pipe Size	Torque " T "	4"	4 "	6"	6"	8"	8"	10"	10"	12"	12"	
(in)	(ft-lbs)	Force	" F "*	(lbs) on	Anch	ors W	/ithout	t & Wi	th Co	ld Se	tting	
2	200	200	400	133	267	100	200	80	160	67	133	
2 1/2 3	230 320	115 160	230 320	77 107	153 213	58 80	115 160	46 64	92 128	38 53	77 107	
4	600	300	600	200	400	150	300	120	240	100	200	
5 6	1000 2000		1000 2000	333 667 1	667 1333	250 500	500 1000	200 400	400 800	167 333	333 667	
8 10	3300 6000		3300 6000	2000			1650 3000	660 1200	1320 2400		1100 2000	
12 14	7500 11000		7500	2500 3667	5000		3750		3000		2500	

TABLE 5 BALL JOINT ANGULAR MOVEMENT In all Pipe Size Maximum Θ Recommended Anale engineered with 20% Safety Factor (inches) Angle systems, a 2 30° 24° safety factor 21/2 - 14 15° 12° is important.

Two Ball Joint Installation without Cold Setting

To size an 8" two ball joint offset for 6" movement at 250 psi, use Table 1. The recommended Center to Center "CC" is 72", the Intermediate Pipe Length "L" is 58" and the Drop in Elevation "Y" is 0.25" Table 4 shows the Force "F" on Anchor as 1100 lbs. A stainless expansion joint thrust is 12,000 lbs., 11 times the required anchorage for the ball joints.

Two Ball Joint Installation with Cold Setting

To size an 8" two ball joint offset for 6" movement at 250 psi with cold set, use Table 2. The recommended Center to Center "CC" is 36") the Intermediate Pipe Length "L" is 22" and the Drop in Elevation "Y" is 0.13" Table 4 shows the Force "F" on Anchor as 2200 lbs This force is still much lower than the stainless expansion joint thrust of 12,000 lbs., which is 5.5 times the required anchorage for the ball joints.

Four Ball Joint Installation without Cold Setting

To size an 8" four ball joint loop for 6" movement, divide the 6" movement by two, as there are two 3" movement legs. Using Table 1, 4" column, "CC" is (48") "L" is 34" and "Y" is 0.17" To size the spreader pipe "SP" so the two legs of the loop do not clash, use Table 3 for a Minimum Spreader Length "SP" of (24")

"Cold Set" designs are the same as above, using Table 2.

FRICTION FORCES

Pipe Friction is usually taken as 30% of the pipe weight between anchors. Add this force to Table 4 or calculated numbers as an additional force on anchors.

CALCULATIONS

For engineers who prefer to do their own calcs. Refer to Figure 1 for definitions of "CC", "L", "CR", "EE", "JL" and "Y"; Table 4 for "F" and "T"; and Table 5 for " Θ ".

Two Ball Joint Installation without Cold Setting

Example: 10" steam line, thermal expansion 7".

 $CC = X / [Sin (\Theta/2)] = 7'' / [Sin (12^{\circ}/2)] = 67''$

 $L = CC - (2 \times CR) = 67'' - (2 \times 7.625'') = 51.75''$

 $EE = L + (2 \times JL) = 51.75'' + (2 \times 16'') = 83.75''$

 $Y = CC - (CC^2 - X^2)^{1/2} = 67'' - (67^2 - 7^2)^{1/2} = 0.37''$

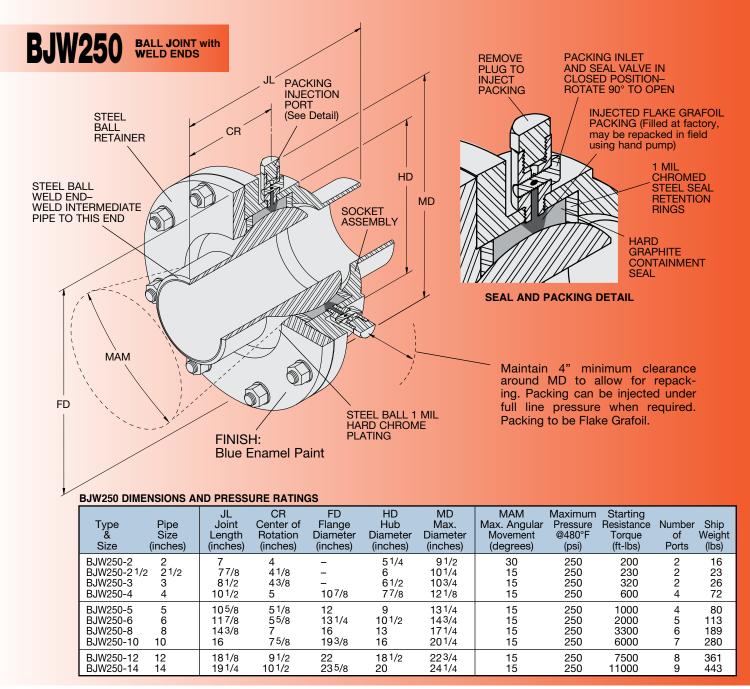
For 0.37" movement, we recommend a spring hanger with a deflection 4 times "Y" or 1.48", i.e. Mason 1.5" deflection 30N hanger.

 $F = 2T / CC = 2 \times 6000$ ft-lbs / 5.58 ft = 2151 lbs.

Two Ball Joint Installation with Cold Setting

Example: 10" steam line, thermal expansion 9".

 $CC = [X/2] / [Sin(\Theta/2)] = [9''/2] / [Sin (12^{\circ}/2)] = 43''$


 $L = CC - (2 \times CR) = 43'' - (2 \times 7.625'') = 27.75''$

 $EE = L + (2 \times JL) = 27.75'' + (2 \times 16'') = 59.75''$

 $Y = CC - (CC^2 - (X/2)^2)^{1/2} = 43'' - (43^2 - (9/2)^2)^{1/2} = 0.24''$

For 0.24" movement, we recommend a spring hanger with a deflection 4 times "Y" or 0.96", i.e. Mason 1" deflection 30N hanger.

 $F = 2T / CC = 2 \times 6000$ ft-lbs/ 3.58 ft = 3352 lbs.

BALL JOINT SPECIFICATION:

Steel Ball Joints shall have weld ends or fixed and floating flanges. The thrust free, ball and socket arrangement shall allow 360° of intermittent rotation and a minimum rocking motion of \pm 7.5 degrees. Seals are guaranteed by the high pressure injection of graphite packing in a cavity between reinforced hard graphite and steel rings.

The ball and steel seal retention rings shall be plated with a minimum 1 mil thickness of crack free hard chrome. The socket must incorporate an adequate number of packing cylinders for uniform distribution of the graphite seal. All cylinders must incorporate a valve to prevent blowback should pumping additional sealing material become necessary while under full line pressure.

Minimum ratings are 250 psi (17 Bar) @ 480°F (250°C).

Certifications must include:

1. Either manufacturer's published information or calculations by a P.E. to verify length of spool pieces and the distance between centers of ball joints for the motion with a reasonable safety factor.

2. The friction force at the start of motion to be resisted by the anchors.

Should the consulting firm prefer to indicate location of anchors and ball joints as preliminary and leave final selections to job site conditions, the manufacturer must have a P.E. on staff with a minimum of 5 years piping design experience to submit final details to allow motion as well as the force on the anchors to overcome starting friction.

Ball Joints shall be weld end **BJW** or Flanged **BJF** as manufactured by Mason Industries, Inc.

